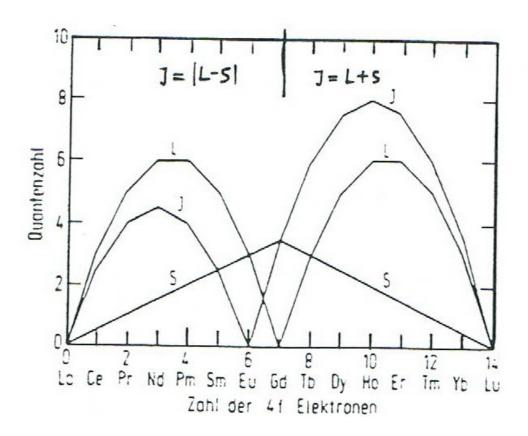
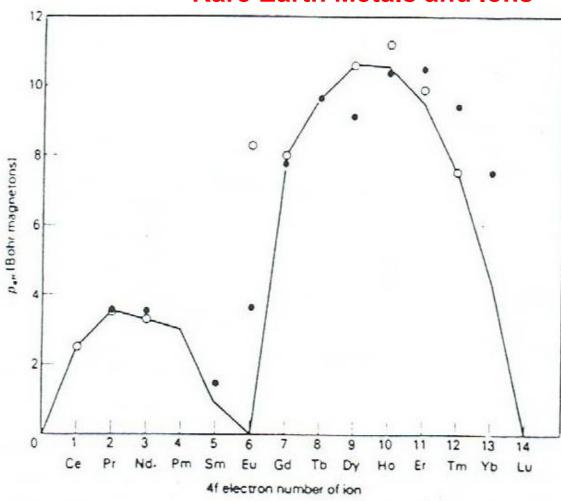


Abbildung 12.2: Molare diamagnetische Suszeptibilität von Atomen und Ionen mit abgeschlossener Elektronenschale aufgetragen gegen $Z_a r_a^2$. Die Suszeptibilität eines Gases oder Festkörpers, der aus diesen Atomen oder Ionen zusammnegesetzt ist, erhält man, indem man mit der Dichte in mol/cm³ multipliziert. Um in SI-Einheiten zu konvertieren, muss man mit 4π multiplizieren.



Rare Earth Metals and Ions

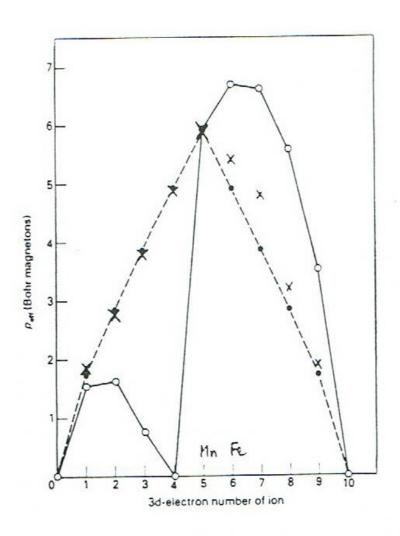
lon	Konfiguration	Schema m _e = +3, +2, +1, 0, -1, -2, -3	S	L	J	Term	p (berechnet)	p (Experiment)
La ³⁺	[Xe]4f ^o		0	0	0	¹ S ₀	0	0
Ce ³⁺	[Xe]4f1	†	1/2	3	5/2	² F _{5/2}	2.54	2.4
Pr ³⁺	[Xe]4f ²	1 1	1	5	4	3H ₄	3.58	3.5
Nd ³⁺	[Xe]4f ²	1 1 1	3/2	6	9/2	4 9/2	3.62	3.5
Pm ³⁺	[Xe]4f ⁴	1 1 1 1	2	6	4	5 4	2.68	
Sm ³⁺	[Xe]4f ⁵	↑ ↑ ↑ ↑ ↑	5/2	5	5/2	⁶ H _{5/2}	0.84	1.5
Eu ³⁺	[Xe]4f ⁶	1 1 1 1 1	3	3	0	⁷ F ₀	0	3.4
Gd ³⁺	[Xe]4f ⁷	↑ ↑ ↑ ↑ ↑ ↑	7/2	0	7/2	⁸ S _{7/2}	7.94	8.0
Tb ³⁺	[Xe]4f8	$\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	3	3	6	⁷ F ₆	9.72	95
Dy ³⁺	[Xe]4f9	$\uparrow\downarrow\uparrow\downarrow\uparrow$ \uparrow \uparrow \uparrow \uparrow	5/2	5	15/2	6H _{15/2}	10.63	10.6
Ho ³⁺	[Xe]4f10	111111 1 1 1	2	6	8	5 8	10.60	10.4
Er3+	[Xe]4f11	↑↓ ↑↓ ↑↓ ↑ ↑	3/2	6	15/2	4 15/2	9.59	9.5
Tm ³⁺	[Xe]4f12	†	1	5	6	³ H ₆	7.57	7.3
Yb ³⁺	[Xe]4f ¹³	11111111111	1/2	3	7/2	2F _{7/2}	4.54	4.5
Lu ³⁺	[Xe]4f ¹⁴	11 11 11 11 11 11 11	0	0	0	¹ S ₀	0	0


Ground state multiplets according to Hund's rules for the 3+ ions of the 4f series

Rare Earth Metals and Ions

Spin S, orbital angular momentum, L and total angular momentum J according to Hund's rules for the 3+ ions of the 4f series.

Rare Earth Metals and Ions


Comparison of measured effective magnetic moments and calculated values for the 4f series of rare earth metals.

3d- Transition Metal Ions

Ion	Konfiguration	Schema m _e = +2, +1, 0, -1, -2,	s	L	J	Term	$p = g_J [J(J+1)]^{1/2}$	$p = g_s [S(S+1)]^{1/2}$	р (Ехр.)
Ti ³⁺ V ⁴⁺	[Ar]3d¹	1	1/2	2	3/2	² D _{3/2}	1.55	1.73	1.8
V ₃₊	[Ar]3d ²	† †	1	3	2	3F ₂	1.63	2.83	2.8
Cr ³⁺ V ²⁺	[Ar]3d ³	1 1 1	3/2	3	3/2	4F _{3/2}	0.77	3.87	3.8
Mn ³⁺ Cr ²⁺	[Ar]3d ⁴	1 1 1 1	2	2	0	⁵ D ₀	0	4.90	4.9
Fe ³⁺ Mn ²⁺	[Ar]3d ⁵	1111	5/2	0	5/2	⁶ S _{5/2}	5.92	5.92	5.9
Fe ²⁺	[Ar]3d ⁶	111 1 1 1	2	2	4	⁵ D ₄	6.70	4.90	5.4
Co ²⁺	[Ar]3d ⁷	11111 1 1	3/2	3	9/2	4F _{9/2}	6.63	3.87	4.8
Ni ²⁺	[Ar]3d ⁸	111111 1	1	3	4	3F ₄	5.59	2.83	3.2
Cu ²⁺	[Ar]3d ⁹	11 11 11 11 1	1/2	2	5/2	² D _{5/2}	3.55	1.73	1.9
Zn ²⁺	[Ar]3d ¹⁰	11 11 11 11 11	0	0	0	¹ S ₀	0	0	0

Ground state multiplets according to Hund's rules for the 2+ ions of the 3d series

3d-Transition Metal Ions

Comparison of measured effective magnetic moments and calculated values for the 3d series of transition metals. Neglecting L describes the experimental data better.

3d- Transition Atoms and Metals

Table 7.2. Number of 3d and 4s electrons in the free transition metal atoms

	K	Ca	S_{c}	Ti	V	Cr	Mn	Fe	Со	Ni	$C\mathbf{u}$	Zn
N_{3d}	0	0	1	2	3	5	5	6	7	8	10	10
N_{4s}	1	2	2	2	2	1	2	2	2	2	1	2
N_{3d+4s}	1	2	3	4	5	6	7	8	9	10	11	12

Element	Spinmoment im ²⁺ Ion	magnet. Moment
Cr	$4 \mu_B$	$< 1 \mu_B$
Mn	5 μ _B	$2.0~\mu_B$
Fe	$4 \mu_B$	$2.2~\mu_B$
Co	$3 \mu_B$	$1.6~\mu_B$
Ni	$2 \mu_B$	$1.6~\mu_B$

Magnetic moments of 3d transition metals compared to spin moment according to Hund's rules.

Octahedral ligand field splitting and filling of d orbitals

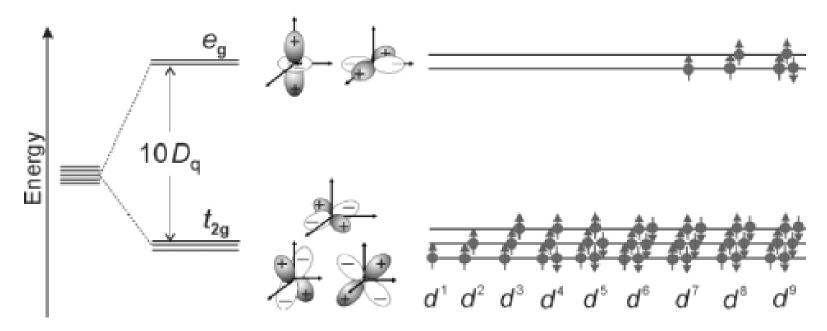


Fig. 6.13. Splitting of the d shell in an octahedral ligand field into doubly degenerate $e_{\rm g}$ and triply degenerate $t_{\rm 2g}$ states. Also shown is the filling of the energy levels for the case that the $e_{\rm g}$ – $t_{\rm 2g}$ splitting is large relative to the exchange interaction [204]. The resulting ground states for d^4-d^7 are called the *low-spin* configurations (see Sect. 7.5.1)

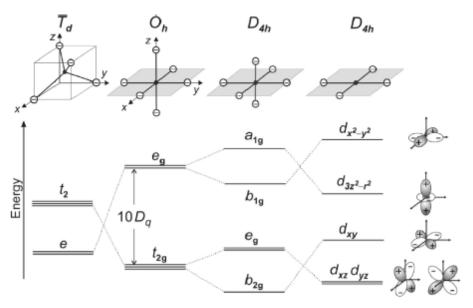
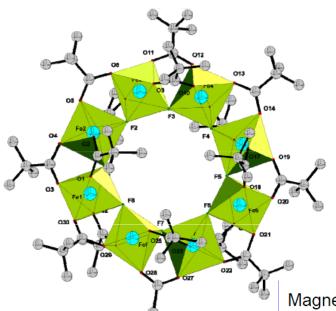
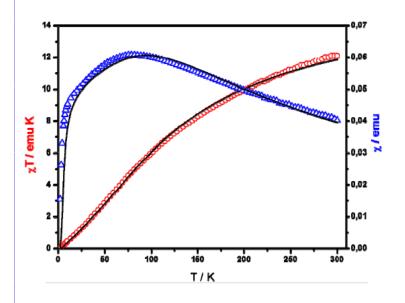
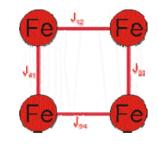



Fig. 7.9. Ligand field splitting of energy levels for a single d electron in fields of different coordination and symmetry. For the cases shown the central 3d ion is assumed to be coordinated by electronegative ligands such a oxygen. On the left we compare the splitting in the tetrahedral (T_d) and octahedral O_h cubic symmetries. For octahedral O_h and tetragonal D_{4h} symmetries we have assumed equal interaction strengths in the x-y plane and varied the interaction along z, as illustrated. On the right are plotted the orbital densities $(d_i)^2$ of the LF eigenfunctions d_i and the numerical sign of d_i wavefunction lobes are indicated on top of the charge densities


3d- Transition Metal Ions


	shell $(l = 2)$								
n	$l_z = 2$,	1,	0.	− 1,	-2	S	$L = \Sigma l_z $	J	SYMBOI
1	Ţ					1/2	2	3/2)	² D _{3 2}
2	1	1				1	3	2	$^{3}F_{2}$
3	1	1	1			3/2	3	$\left \frac{2}{3/2} \right J = L - S $	4F 3/2
4	1	1	1	1		2	2	0	5D0
5	1	1	1	1	1	5/2	0	5/2	6S 5/2
6	Ħ	1	1	†	†	2	2	4)	5D4
7	Ħ	17	†	1	1	3/2	3	9/2	4F _{9/2}
8	11	11	11	1	1	1	3	J = L + S	3F4
9	Ħ	17	11	11	1	1/2	2	5/2	² D _{5/2}
0	tt.	Ħ	11	Ħ	TT.	0	0	0	1 S ₀

Ground state multiplets according to Hund's rules for the 2+ ions of the 3d series he.

Magnetische Suszeptibilitätsmessung von $[Fe_8F_8(Bu^t-COO)_{16}\cdot(CH_3)_2CO],2\ K-300\ K,\ B=1T$

B/T	1
S	5/2
g	1,95
$J_{1,2} / cm^{-1}$	-5,98

 χT_{300K} = 12,1 emuK

Mai 2008

Diplomarbeit Mara Johann – AK Rentschler